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Abstract

Learning in physical neural systems must rely on learning rules that
are local in both space and time. Optimal learning in deep neural ar-
chitectures requires that non-local information be available to the deep
synapses. Thus, in general, optimal learning in physical neural systems
requires the presence of a deep learning channel to communicate non-local
information to deep synapses, in a direction opposite to the forward prop-
agation of the activities. Theoretical arguments suggest that for circular
autoencoders, an important class of neural architectures where the output
layer is identical to the input layer, alternative algorithms may exist that
enable local learning without the need for additional learning channels, by
using the forward activation channel as the deep learning channel. Here
we systematically identify, classify, and study several such local learning
algorithms, based on the general idea of recirculating information from
the output layer to the hidden layers. We show through simulations and
mathematical derivations that these algorithms are robust and converge
to critical points of the global error function. In most cases, we show
that these recirculation algorithms are very similar to an adaptive form
of random backpropagation, where each hidden layer receives a linearly
transformed, slowly-varying, version of the output error.

1 Introduction

Autoencoders play a central role in the theory and practice of neural networks,
for instance by providing a bridge between supervised and unsupervised learn-
ing. Autoencoders can be trained by backpropagation using the input data as
the target. While this approach is reasonable in a digital simulation, it faces
serious challenges in a physical neural autoencoder due to the non-locality of
the backpropagation algorithm. In a physical neural system, such as a brain or
a neuromorphic chip, all learning rules must be local in both space and time,
i.e. must depend only on variables that are available locally at, or near, each
synapse. Thus, in a physical neural autoencoder, a deep learning channel must
exist capable of communicating non-local spatio-temporal information, such as
errors, to deep synapses [1].
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In this work, we study various embodiments of deep learning channels for
autoencoder architectures and the information they ought to carry, as well as
the corresponding learning rules. In particular, the theory of local learning
predicts the existence of algorithms for training autoencoders, alternative to
backpropagation, in which non-local error information is provided to the deep
weights by recirculating the autoencoder output back through the autoencoder
itself. In these algorithms, differences of activation in time are used to replace
backpropagated errors. Thus, in recirculation algorithms, the forward weights
have a dual role as they embody both the forward channel and the learning
channel. The recirculation process can be implemented in several ways which
we study both through mathematical and simulation analyses.

The mathematical and simulation analyses reveal robustness across these
variations and close connections between the class of recirculation learning al-
gorithms and random backpropagation [2, 3, 4]. As in random backpropagation,
the recirculation learning channel provides a linearly transformed version of the
error information to the deep weights. And as in adaptive random backpropa-
gation, this linear transformation evolves during learning.

This study falls under the broader theme of “learning in the machine”, in
contrast to machine learning, focused on studying the effects of physical con-
straints on physical neural systems, in contrast to digitally simulated neural
systems. The key advantage of recirculation algorithms is that they are local.
This locality property means that they could be used to train physical neural
systems, for example in fast, power-efficient neuromorphic chips [5], and might
provide a useful model of learning for biological neural systems. Recirculation
algorithms are not meant to be practical in the sense of superseding backprop-
agation on digital computers and standard deep learning applications.

In Section 2 we first review autoencoders, backpropagation, and random
backpropagation and formalize the notion of a circular autoencoder in which
the output layer is identical or physically close to the input. In Section 3, we
briefly review the theory of local learning and the problems it identifies with
backpropagation applied to autoencoders in physical neural networks. This
naturally leads in Section 4 to the definition of various recirculation algorithms,
depending in particular on whether errors or output are being recirculated and
how activities are combined across different cycles. Mathematical analyses of er-
ror and output recirculation, including connections to random backpropagation,
are provided in Sections 5 and 6. Simulations further corroborating our results
are reported in Section 7, followed by a short Discussion. Finally, recirculation
algorithms for non-circular autoencoders are studied in the Appendix.

2 Autoencoders and Backpropagation

In a supervised learning framework for neural networks, data typically comes in
the form of input/output-target pairs of the form (I(k), T (k)) for k = 1, . . . ,K.
In the special case of autoencoders, the targets are equal to the inputs: T (k) =
I(k) for every k. We also assume that the learning task for the autoencoder is
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to minimize a standard error function E , typically square error loss in the case
of real valued data, and sum of relative entropies in the case of binary data.

2.1 Standard Autoencoders

We begin by considering a Standard Autoeconder architecture A[N0, N1, N2]
with N0 inputs in layer l = 0, N1 hidden units in hidden layer l = 1, and
N2 = N0 output units in output layer l = 2 (Figure 1). All the concepts
presented here can be immediately extended to autoencoders architectures with
additional hidden layers. We assume that there is an N0×N1 matrix of weights
A connecting the hidden layer to the output layer, and an N1 × N0 matrix of
weight B connecting the input layer to the hidden layer (Figure 1). A unit i in
layer l = 1 has a total input S1

i and produces an output O1
i given by:

O1
i = f(S1

i ) = f(
∑
j

bijO
0
j ) (1)

or, in matrix notation,

O1 = F ◦BO0 = FBO0 (2)

where O0 is the vector of activation in the input layer, initially equal to a
training example (O0 = I), and F ◦ BO0 denotes that the non linear function
f is applied to each component of the vector BO0 (it is also possible to have a
different non-linear function f1i for each neuron i in layer 1). Since there is no
risk of confusion, we omit the symbol “◦” in what follows. Likewise, a unit i in
layer l = 2 has a total input S2

i and produces an output O2
i given by:

O1
i = g(S2

i ) = g(
∑
j

aijO
1
j ) (3)

or, in matrix notation,

O2 = G ◦AO1 = GAO1 = GAFBI (4)

where G represents the non-linear functions of the output layer, with the same
remarks as for the hidden layer.

We assume standard transfer functions where f (or g) is the identity (f = Id)
if the corresponding unit is linear, or f is typically sigmoidal (e.g. logistic or
hyperbolic tangent) or rectified linear in the case of non-linear units. When A =
Bt (where Bt denotes the transpose of the matrix B) we say that the standard
autoencoder is symmetric. This symmetry relation can hold at initialization
time only or, more strongly, at all times. When the term symmetric is used
without any other qualifications, we will take it to mean symmetric at all times.
The symmetric standard autoencoder architecture corresponds to a standard
autoencoder architecture where A = Bt at all times. Obviously in a physical
implementation of a symmetric standard autoencoder, one must consider the
computational and physical mechanisms that ensure the symmetry.

3



Figure 1: Standard autoencoder architecture with weight matrices A and B and
non-linear transformations F and G.

2.2 Circular Autoencoders

For reasons that will become obvious in the coming sections, we are particularly
interested in the study of circular autoencoders. In a physical implementation, in
addition to the standard autoencoder architecture, it is also possible to consider
a circular autoencoder architecture A∗[N0, N1, N2, . . . , NL−1, NL] with N0 =
NL, shown in Figure 2, with multiple hidden layers numbered 0, 1, . . . , L. In a
circular architecture, the output units are identical (or spatially very close) to
the input units, thus here 0 = L corresponds to the input/output layer. We
assume that there is a matrix of weights Ah connecting layer h − 1 to layer h
for h = 1, . . . , L (note: while we use A1, . . . , AL with multiple hidden layers,
when only a single hidden layer is present we use A and B instead to improve
readability). In addition, in the non-linear case, there is a vector of non-linear
functions Fh associated with each layer h, h = 1, . . . , L. Thus, with the same
notation as above, we have:

Oh(t) = FhAhOh−1(t) (5)

for h = 1, . . . , L and O0(0) = I. The time index t here is used to denote the
cycle, with t = 0 corresponding to the activations generated by the original
input I. In the coming sections, t = 1 will be used to index the first cycle of
recirculation, and so forth.
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Figure 2: Circular autoencoder with multiple hidden layers and connection ma-
trices A1, . . . , AL. In the non-linear case, non-linear transformations F 1, . . . , FL

are associated with each layer.

2.3 Backpropagation

2.3.1 Standard Backpropagation

Backpropagation has been the most successful algorithm for training neural
networks. In standard backpropagation in a layered feedforward network with
L layers, the learning rule for a deep weight wh

ij connecting neuron j in layer
h− 1 to neuron i in layer h is given by:

∆wh
ij = −η ∂E

∂wh
ij

= η(BP )hi O
h−1
j (6)

where Oh−1
j is the presynaptic activity of neuron j in layer h− 1, (BP )hi is the

postsynaptic backpropagated error, which is computed recursively by propagat-
ing the error T −OL from the top layer to the bottom layer using the chain rule,
and T is the target. These equations can be applied in batch mode (gradient
descent), or online (stochastic gradient descent). Using the chain rule, one sees
immediately that the backpropagated error satisfies the recurrence relation:
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(BP )hi =
∂E
∂Sh

i

= (fhi )′
∑
k

(BP )h+1
k wh+1

ki (7)

with the typical boundary condition:

(BP )Li =
∂Ei
∂SL

i

= Ti −OL
i (8)

This is the boundary condition for the three most common types of neural net-
work outputs and error functions: (1) linear outputs with squared error for
regression; (2) logistic outputs with relative entropy error for binary classifica-
tion; and (3) softmax outputs with relative entropy error for classification into
k classes (k > 2).

Thus, in short, the errors are propagated backwards in an essentially linear
fashion using the transpose of the forward matrices, with a multiplication by
the derivative of the corresponding forward activations every time a layer is
traversed. It is essential to note that at any critical point where the gradient
is zero, the deep weights will depend on many quantities, such as the output
error which, in a physical feed-forward network, are not available locally at each
deep synapse. Thus, in a physical feed-forward neural system, for any kind of
optimal learning (i.e. any learning capable of reaching critical points) there must
exist physical channels capable of transmitting non-local information to the deep
synapses (see Section 3 on Local Learning).

2.3.2 Random Backpropagation

An important result, supported by simulations and theoretical analyses [2, 3, 6,
4], is that the weight matrices in the backpropagation process do not need to
be the transpose of the forward matrices. In fact they can be chosen randomly
and most of the time the network will be able to learn almost as well as if the
transpose matrices had been used. Furthermore this random backpropagation
process is robust in the sense that significant variations can be incorporated into
the backward channel without interfering with the learning process, including:
(1) sparse random matrices; (2) skip connections that directly connect the out-
put layer to the deep layers; (3) non-linear operations; and (4) adaptation, such
that the matrices in the learning channel change slowly during the training. It
is best if the random matrices are full rank, as determined by the corresponding
layers, in order to transmit the maximum amount of information about the error
to the deep layers. However even that is not absolutely mandatory in the sense
that graceful, as opposed to catastrophic, degradation is observed in the case
of non-maximal ranks. Finally, as in all the simulations in [3, 4] the matrices
should not contain any bias terms.

Thus, in short, what seems to be important are three things [3, 4]. First,
gradient descent should be used in the top layer (i.e. no random matrices for the
top layer). Second for learning in the deep layers, the deep layers should receive
some information of the form f(T − O) where the function f can be random
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as long as it is smooth (e.g. continuously differentiable almost everywhere)
and with no bias (f(0) = 0) so that locally, to a first-order approximation, f
corresponds to a matrix multiplication that preserves information about T −
O (high-rank matrix). In addition, it is possible for each f to change slowly
during learning. And thirdly, when updating the weights of a given layer, it
is important to include the derivatives of the activations of the corresponding
layer—all derivatives in the layers above can be ignored.

While random backpropagation and its variants are studied in [2, 3, 4],
these references do not study random backpropagation in autoencoders or any
recirculation algorithms.

2.3.3 Standard Backpropagation in the Standard Autoencoder

When the backpropagation equations are applied to the standard autoencoder,
one immediately gets:

∆aij = η(Ti −O2
i )O1

j (9)

and :

∆bij = η[
∑
k

(Tk −O2
k)aki]f

′(S1
i )Ij (10)

where here f ′ is the derivative of forward transfer function f . In vector-matrix
form:

∆A = η(I −O2)(O1)t (11)

and:

∆B = ηF ′At(I −O2)(It) (12)

where M t denotes the transpose of the matrix (or vector) M , F denotes the
vector of derivatives f ′ at each hidden neuron, and η is the learning rate. By
default, all vectors are column vectors.

3 Local Learning and Locality Problems

3.1 Local Learning

A physical neural system, such as a brain or a neuromorphic chip, must obey
the laws of physics and in particular any learning rule for adjusting synaptic
weights must be local in both space and time, i.e. it must depend on variables
that are available locally at the synapse in both space and time [1]. With the
formalism used here, a reasonable notion of spatial locality is to require that a
synaptic learning rule depend only on the pre- and post-synaptic activities of
its neurons, and the synaptic weight itself:
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∆wh
ij = F(Oi, Oj , wij) (13)

for some function F . To extend the concept to include locality in time, one can
write:

∆wh
ij(t) = F (Oi(s), Oj(s), wij(s)) for all t− u ≤ s ≤ t (14)

where u is the window of time over which spatially local information can be
integrated. One of the key ideas behind the recirculation algorithms to be de-
scribed is to tradeoff space for time, using differences in the activations of the
same units at different times to drive the learning. Thus we will be looking for
learning algorithms that typically are polynomial in the local variables, in fact
the product of a presynaptic and a postsynaptic term, and where the postsy-
naptic term may be a difference between two activations taken over a relatively
short time window. Thus typically during recirculation we will consider rules of
the form:

∆wh
ij(t) = F (Oi(s)−Oi(t), Oj(s), wij(s)) for t− u ≤ s ≤ t (15)

These learning rules rely on the product of the presynaptic activity times some
measure of change in the postsynaptic activity, used to communicate error infor-
mation. Although in this work we are not using spiking neurons, such learning
rules are closely related to the concept of spike time dependent synaptic plastic-
ity (STDP). STDP Hebbian or anti-Hebbian learning rules have been proposed
using the temporal derivative of the activity of the postsynaptic neuron [7] to
encode error derivatives.

∆wij = η(∆Opost
i )(Opre

j ) (16)

with a negative sign in the anti-Hebbian case. In a layered architecture, for a
deep weight wh

ij we can write:

∆wh
ij = η(∆Oh

i )(Oh−1
j ) (17)

3.2 Locality in the Standard Autoencoder

The fundamental starting point for this work is the observation that in the
standard autoencoder, the backpropagation equations (Equations 9-12) violate
the locality principle in three major ways:

1. Locality of Targets: In order to learn A, the error (I − O2) must be
computed and I is not a local variable at the output layer of the standard
feedforward autoencoder (Equation 11).

2. Locality of Outputs or Errors: In order to learn B, O2 (or I − O2)
must be a local variable for the hidden layer of the standard feedforward
autoencoder, and this is not the case (Equation 12).
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3. Locality of Weights: In order to learn B, the synaptic weights asso-
ciated with At must be local variables for the synapses connecting the
input layer to the hidden layer of the standard feedforward autoencoder,
and this is not the case (Equation 12).

These problems are magnified for autoencoders with several hidden layers.
We know from the study of random backpropagation [2, 3, 4] that the lo-

cality of the weights may not be a crucial problem. [Alternatively, one could
imagine a mechanism that couples the weights in A and B and forces them
to be symmetric, or approximately symmetric, at the beginning of learning, or
throughout learning A ≈ Bt. For instance, in the linear compressive case, it
is known that an optimal solution satisfying A = Bt exists [8]. However the
other two problems are crucial and significantly more complex in a standard
autoencoder versus a circular autoencoder. In a circular autoencoder, the prob-
lem of the Locality of Targets vanishes, because the output is spatially close or
identical to the target, which is equal to the input. Thus the main problem in a
circular autoencoder is the locality of the outputs or the errors. One physically
plausible way to provide information about the outputs or the errors to the deep
layers is by recirculating this information through the circular autoencoder.

3.3 Locality in the Circular Autoencoder

Remarkably, in the circular autoencoder two of the three locality problems vanish
entirely: the Locality of Targets and the Locality of Outputs. Thus, in principle,
no additional deep learning channel is needed. First, because the output layer is
equal to the input layer, it is possible to locally compute the error, if the error
is needed. Second this error, or the output of the last layer, can be communi-
cated to the other layers by recirculating the corresponding information in the
network using the existing connections of the circular autoencoder. In this way,
necessary information about both inputs and targets becomes locally available
at each deep synapse. Thus, by recirculating information from the output of
the circular autoencoder, one can predict that learning algorithms ought to exist
that are both entirely local in space and time and enable global learning from the
training data (i.e. convergence to critical points of the global error function).
Furthermore, this recirculation process enables the communication of an error
signal f(I−OL) at each deep layer that is a function of the error I−OL observed
at the output layer, as in the the case of random backpropagation. Therefore the
corresponding learning rules of these algorithms can take the same general form
as the learning rules of BP/RPB in terms of a product of a presynaptic activity
and a postsynaptic “error” term.
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4 Recirculation Algorithms in the Circular Au-
toencoder

Within the general concept of recirculating information in the circular autoen-
coder there are a number of variants depending on: (1) the nature of the in-
formation that is being recirculated; (2) how the neural activity in one cycle
combines with the neural activity in the previous cycle(s); and (3) the specific
local learning rule used to update the weights.

4.1 Recirculated Information

In terms of which kind of information is being recirculated, we will consider two
different cases, although they turn out to be similar, at least in the case where
the biases are set to 0.

1. Recirculation of Errors: where the error I − OL is computed in the
input layer and then recirculated to the other layers.

2. Recirculation of Outputs: where the output OL is recirculated to the
other layers. While we will focus primarily on the first two cycles indexed
by t = 0 and t = 1, it is also possible to recirculate output information
over multiple cycles.

When the error I − OL is computed in the circular autoencoder and then
recirculated, each deep layer receives some function f(I −OL) of the error, and
this is exactly the situation one has in random backpropagation, provided there
are no biases in the units to ensure that f = 0 when there is no error. The
main difference is that f is computed in the forward direction of the architec-
ture, rather than the reverse one, but this turns out to be a minor difference.
When the outputs are recirculated, and this is perhaps the most important and
interesting case, the difference in activity in time between two different cycles,
is used to compute again some function f(I − OL) of the error for each layer
and each unit. In this case, units can have biases since the effect of biases may
cancel when the difference is taken. Note that in both cases of recirculation, for
each layer the function f slowly varies in time as the learning progresses, which
corresponds to an adaptive variant of random backpropagation (ARBP) [3, 4].

4.2 Combination of Neural Activity Across Cycles

When information is recirculated, one must define how the activity resulting
from the recirculation process combines with any previous activity. This is most
relevant for the recirculation of outputs. Here we will consider up to four main
cases, described below for the circular autoencoder but the same ideas apply
to the standard autoencoder. In the tables below, for simplicity, we show the
activity for layers 0, 1, and 2 only, but the same idea extends to all the layers.
These cases contain and generalize the single case considered in [9]. As we shall
see in the mathematical derivations and simulations, all these cases turn out
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to be fairly similar and there is nothing fundamental about any one of them,
which is satisfactory since each one of the cases corresponds to different low-
level assumptions about how the underlying hardware, and its time constants,
operate.

4.2.1 Plain Recirculation (PR)

In this case, recirculation is treated as a fast process with no memory: there is
no combination of activities.

t=0 t=1

O2(t) F 2A2F 1A1I F 2A2F 1A1OL(0)

O1(t) F 1A1I F 1A1OL(0)

O0(t) I O0(1) = OL(0) = FLAL . . . F 1A1I

Table 1: Plain Recirculation Algorithm (PR).

4.2.2 Convex Combination of Recirculation (CCR)

In this case, recirculation is still a fast process but the units are assumed to
have some memory of the original activity so that the original activity and the
recirculated activity are combined through a convex combination.

t=0 t=1

O2(t) F 2A2F 1A1I λF 2A2F 1A1I + (1− λ)F 2A2F 1A1OL(0)

O1(t) F 1A1I λF 1A1I + (1− λ)F 1A1OL(0)

O0(t) I O0(1) = λI + (1− λ)OL(0)

Table 2: Convex Combination of Recirculation Algorithm (CCR).

4.2.3 Recirculation of Convex Combination (RCC)

In this case, recirculation is a slower process in the sense that the recirculated
activity and the original activity are first combined in a convex manner in layer
0, and then this convex combination is propagated. Note that CCR and RCC
are identical for linear autoencoders, where all the units are linear.
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t=0 t=1

O2(t) F 2A2F 1A1I F 2A2F 1A1[λI + (1− λ)OL(0)]

O1(t) F 1A1I F 1A1[λI + (1− λ)OL(0)]

O0(t) I O0(1) = λI + (1− λ)OL(0)

Table 3: Recirculation of Convex Combination (RCC).

4.2.4 Convex Combination of Recirculation of Convex Combination
(CCRCC)

This case combines the two previous cases together and assumes both relatively
slow recirculation and units with a memory. Here the recirculated activity and
the original activity are first combined in a convex manner in layer 0, then this
convex combination is propagated, and then the activity of the units equilibrates
to a convex combination of the previous activity and the activity resulting from
the recirculation process. For simplicity, we will use the same coefficient λ in the
two kinds of convex combinations, and across all layers, but the results remain
similar if, for instance, two different coefficients λ1 and λ2 are used for the two
different convex combinations.

t=0 t=1

O2(t) F 2A2F 1A1I λF 2A2F 1A1I + (1− λ)F 2A2F 1A1[λI + (1− λ)OL(0)]

O1(t) F 1A1I λF 1A1I + (1− λ)F 1A1[λI + (1− λ)OL(0)]

O0(t) I O0(1) = λI + (1− λ)OL(0)

Table 4: Convex Combination of Recirculation of Convex Combination Algo-
rithm (CCRCC).

Yet another possibility is to have each layer take a combination of its original
and current activity, and pass it forward. We call this recirculation with con-
vex combination (RWCC). All these variations correspond to slightly different
modalities in the ways the underlying neurons operate and the time scales of
how they integrate and communicate information. As we shall see, in the big
picture of recirculation, these differences turn out to be relatively minor.

4.3 Local Learning Rules

In general, we will use local learning rules that are typically Hebbian in the
form of a product of a presynaptic activity and a postsynaptic term containing
error information—as we know from BP/RBP that such rules are both sufficient
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and effective. In addition, adopting rules with such form automatically ensures
locality in space. On the other hand, locality in time requires that all the terms
in the learning rule be computed within a few cycles–usually two, but we will
consider also larger intervals—of recirculation. With output recirculation, we
will typically use differences in activity between cycle 0 and cycle 1 to derive
an error signal. In this way, the same local learning rule can be applied to
each layer, and the rule for the weights in the top layer corresponds exactly to
gradient descent.

To the best of our knowledge, the term recirculation was introduced in [9]
together with one recirculation algorithm. However, this work had several lim-
itations: (1) no theoretical motivation was provided for the necessary existence
of such an algorithm; (2) only one special version of the algorithm (Convex
Combination of Recirculation) was presented, without noticing that the con-
vex combination is not necessary (see below); and (3) the formal analysis was
incomplete and unnecessarily limited to the very restrictive case of a circular
autoencoder with a single hidden layer, and symmetric weight matrices, and
linear output units with “high regression”; (4) no connection to RBP (which
was not known at the time) was presented. Here we look at more general classes
of algorithms and address all these points.

5 Circular Autoencoder: Analysis of Error Re-
circulation

5.1 Error Recirculation and Random Backpropagation

As previously discussed, either the error information I−OL(0) is first computed
and then recirculated (Error Recirculation) so that O0(1) = I − OL(0), or the
output OL(0) is recirculated (Output Recirculation) so that O0(1) = OL(0). In
the case of error recirculation, it is natural to focus on plain recirculation (PR)
only, as the original information and the recirculated information are not of the
same kind. In this case, we have: O0(1) = I −OL(0) with the learning rules:{

∆Ah = ηOh(1)(Oh−1(0))t for h = 1, . . . , L− 1

∆AL = ηO0(1)(OL−1(0))t
(18)

Clearly AL is being updated by gradient descent in a local way, as long as there
is a memory for the pass at t = 0 in the presynaptic units. For the other layers,
Oh(1) = FhAhOh−1(1) = FhAh[Fh−1Ah−1[. . . F 1A1[I −OL(0)] . . .]]. Thus the
error [I−OL(0)] is being communicated to each layer through a series of matrix
multiplications and non-linear transformations, where the matrices themselves
are evolving (slowly) in time. The matrices Ah are typically initialized randomly,
and thus likely to be full rank, at the beginning of learning and likely to remain
full rank during learning of any challenging data set.Thus, in short, this can
be viewed as a form of adaptive non-linear random backpropagation and thus in
general can be expected to converge [3, 4]. This is confirmed in the mathematical
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derivations and simulations below. Note that the main difference with standard
RBP is that the error is being propagated in the forward direction, from the
input layer to the target layer, rather than in the reverse direction.

5.2 Error Recirculation: the Linear Case

In the linear case, this can be written as:

{
∆Ah = ηPh(I − PL(I))[Ph−1I]t = ηPh(Id− PL)IIt(Ph−1)t

∆AL = η(I − PLI)[PL−1I]t = η(Id− PL)IIt(PL−1)t
(19)

for h = 1, . . . , L − 1 where Ph = AhAh−1 . . . A1. Here Id denotes the Identity
matrix associated with the size of the input vector I, P 0 = Id.

As usual, in the linear case, we can obtain a system of differential equations
by taking expectations over the training data while assuming that the learning
rate is small [3, 4]. As a result, we get the polynomial system of ordinary
differential equations:{

dAh

dt = Ph(Id− P )Σ(Ph−1)t for h = 1, . . . , L− 1
dAL

dt = (Id− P )Σ(PL−1)t
(20)

where P = PL, P 0 = Id, and Σ = E(IIt). Thus consecutive matrices are
deterministically coupled by the system of differential equations:

dAh+1

dt
= Ah+1 dA

h

dt
(Ah)t (21)

In the case of a circular autoencoder with a single hidden layer (L = 2), the
system becomes: {

dA1

dt = A1(Id− P )Σ
dA2

dt = (Id− P )Σ(A1)t
(22)

In general, even in the linear case, these systems are not easy to analyze. How-
ever complete analysis, showing that the system converges to optimal solutions,
are possible in some important special cases. Since in the linear case error and
output recirculation are similar, we prove the corresponding theorems below in
the section on output recirculation in circular autoencoders.

6 Circular Autoencoder: Analysis of Output Re-
circulation

This section contains the main mathematical results.
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6.1 Output Recirculation and Random Backpropagation

In the case of Plain Recirculation, we have:

{
∆Ah = η(Oh(0)−Oh(1))(Oh−1(0))t for h = 1, . . . , L− 1

∆AL = η(O0(0)−O0(1))(OL−1(0))t
(23)

Again AL is being updated by gradient descent. For the other layers, assuming
that all the transfer functions are continuous, we can use the mean value theorem
to write:

Oh(0)−Oh(1) = FhAhOh−1(0)−FhAhOh−1(1) = [Fh]′(Rh)Ah·(Oh−1(0)−Oh−1(1))
(24)

where [Fh]′(Rh) represents the vector of derivatives of the activation functions
taken at the appropriate intermediate vector of coordinates Rh. The right hand
side corresponds to the dot product of this vector with the difference of the
outputs in layer h − 1. One key point, is that the right hand side is 0 when
(Oh−1(0)−Oh−1(1)) = 0. Equation 24 holds even when biases are present and,
as we shall see, a similar relationship holds when activities are combined in
different ways (CCR, RCC, etc.) This equation can be iterated layer-by-layer
to produce:

Oh(0)−Oh(1) = [Fh]′(Rh)·Ah[[Fh−1]′(Rh−1)·Ah−1 . . . [F 1]′(R1)·A1(I−OL(0))
(25)

Thus again the error [I −OL(0)] is being communicated to each layer through a
series of matrix and scalar multiplications, where the matrices and the scalars
themselves are evolving smoothly in time. This can be viewed as a form of non-
linear adaptive random backpropagation and thus in general can be expected to
converge [3, 4].

In the case of CCR, the difference in the left hand side of Equation 24 is
replaced by:

Oh(0)− λOh(0)− (1− λ)Oh(1)) = (1− λ)(Oh(0)−Oh(1)) (26)

thus except for a rescaling of the learning rate by 1 − λ everything else is the
same.

In the case of RCC, if we letGh be the functionGh = FhAhFh−1Ah−1 . . . F 1A1

then, using again the mean value theorem:

Oh(0)−Oh(1) = Gh(I)−Gh(λI+(1−λ)OL(0)) = [Gh]′(Rh)·((1−λ)I−(1−λ)OL(0))
(27)

where [Gh]′(Rh) represents the vector of derivatives of the activation functions
Gh taken at the appropriate intermediate vector of coordinates Rh. Thus again
the hidden layer h receives a transformed version of the error.
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In the case of CCRCC, using the same notation as above, we have:

Oh(0)−Oh(1) = Gh(I)− (λGh(I) + (1− λ)Gh(λI + (1− λ)OL(0)) (28)

and thus:

Oh(0)−Oh(1) = (1− λ)(Gh(I)−Gh(λI + (1− λ)OL(0)) (29)

Again, using the mean value theorem, this leads to:

Oh(0)−Oh(1) = (1−λ)[Gh]′(Rh)·(I−λI−(1−λ)OL(0)) = (1−λ)2[Gh]′(Rh)·(I−OL(0))
(30)

where [Gh]′(Rh) represents the vector of derivatives of the activation functions
Gh taken at the appropriate intermediate vector of coordinates Rh. Thus again
the hidden layer h receives a transformed version of the error, with a rescaling
of the learning rate by a factor (1 − λ)2 (or 1 − λ1)(1 − λ2) in the case of two
different convex combination coefficients). Similar observations can be made
with the RWCC algorithm.

In summary, in all cases (PR, CCR, RCC, CCRCC, RWCC) application of
the mean value theorem shows that the difference of the corresponding activities
during cycle t = 0 and cycle t = 1 can be written as a function of the error
I − OL(0) and, to a first order, this function is linear with no constant terms,
as in random backpropagation and its variants. Furthermore, this remains true
when biases are present.

6.2 The Special L = 2 Case

For better readability, we will use the notation A1 = B and A2 = A in the L = 2
case which depends only on two matrices. The recirculation learning rules in
the PR case are: {

∆B = η(O1(0)−O1(1))(O0(0))t

∆A = η(O0(0)−O0(1))(O1(0))t
(31)

The learning equations of A and B correspond to Equation 15 taken over one
cycle. The learning equation for A corresponds exactly to gradient descent. The
learning equation for B can be written as:

∆B = η(FS1(0)− FS1(1))(O0(0))t = ηF ′(R)(S1(0)− S1(1))(O0(0))t (32)

where F represents the vector transfer function of the hidden layer, and S
represents the linear activity coming into the layer. The second equality is
obtained by applying the mean value theorem. If the transfer functions are
sigmoidal (or increasing) all the components of F ′ are positive, and if these
transfer functions are logistic, then all the components of F ′ are between 0
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and 1. For comparison, purposes, the gradient descent equation for B is easily
derived simply by applying the backpropogation algorithm. The output error
(O0(0)−O0(1)) must be multiplied first by the transpose of the forward matrix
A, then by the vector of derivatives of the activation functions F ′(S1(0)), to
yield the backpropagated error. The backpropagated error in turn is multiplied
by the presynaptic activity O0(0)). Thus, using matrix notation, the gradient
descent learning rule for B is given by:

∆′B = ηF ′(S1(0))At(O0(0)−O0(1))(O0(0))t (33)

If we assume that the autoencoder is symmetric, i.e. B = At, then the gradient
descent equation can be rewritten as:

∆′B = ηF ′(S1(0))B(O0(0)−O0(1))(O0(0))t = ηF ′(S1(0))(S1(0)−S1(1))(O0(0))t

(34)
As all the components of F ′(R) have the same sign as the components of
F ′(S1(0)), it is clear in this case that ∆B is similar to ∆′B. Thus we see
that at least in the symmetric case B = At the recirculation learning equation
is very similar to gradient descent. In particular, the signs of the weight up-
dates are identical. Thus starting with B(0) ≈ At(0) may help the algorithm
converge although the weight updates for A and B do not guarantee that the
symmetry will be maintained throughout the learning. In the symmetric linear
case, Equations 32 and 34 are the same and recirculation is identical to back-
propagation. Furthermore, if the initialization is symmetric B(0) = At(0), then
symmetry is preserved at all times during learning, i.e. B = At at all times.

6.3 Output Recirculation: the Linear Case

In the linear case, taking as usual expectations over the training set with a small
learning rate, one obtains a polynomial system of ordinary differential equations
of the form:{

dAh

dt = Ph(Id− P )Σ(Ph−1)t for h = 1, . . . , L− 1
dAL

dt = (Id− P )Σ(PL−1)t
(35)

where Ph = AhAh−1 . . . A1, P = PL, and Σ = E(IIt). Thus in the linear case,
plain recirculation of error or plain recirculation of output are the same. For
consecutive matrices one again has the relationship:

dAh+1

dt
= Ah+1 dA

h

dt
[Ah]t (36)

As for the similar case in RBP [3, 4], we see that there is a deterministic coupling
between consecutive layers, and the top layer follows gradient descent.

It is instructive to look at the case of L = 2 and see how it illuminates the
connection to both BP and RBP. When L = 2, letting A1 = B and A2 = A,
the recirculation learning differential equations are given by:
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{
dA
dt = (Id−AB)ΣBt

dB
dt = B(Id−AB)Σ

(37)

In contrast, the usual gradient descent differential equations are given by:{
dA
dt = (Id−AB)ΣBt

dB
dt = At(Id−AB)Σ

(38)

and the RBP differential equations by:{
dA
dt = (Id−AB)ΣBt

dB
dt = C(Id−AB)Σ

(39)

where C is a random matrix. Notice that the equation for dA/dt is exactly the
same in all three cases. The difference is that BP uses At to send information
about the error, RBP replaces it with a fixed random matrix C, and recirculation
uses B itself as the “random matrix”.

6.3.1 The Linear A∗[1, 1, . . . , 1] Case

In the circular autoencoder A∗[1, 1, . . . , 1] case, where each layer contains only
one linear neuron, the system becomes:{

dah

dt = βa21 . . . a
2
h−1ah(1− P ) for h = 1, . . . , L− 1

daL

dt = βa1 . . . aL−1(1− P )
(40)

where β = E(I2) and P = a1 . . . aL. Clearly P = 1 corresponds to the optimum.
For consecutive weights, we have:

dah+1

dt
= ah+1ah

dah
dt

(41)

for h = 1, . . . , L− 2. Here the coupling can be solved, yielding:

log |ah+1| =
1

2
a2h +Kh or |ah+1| = Khe

a2
h/2 (42)

for h = 1, . . . , L − 2 where in either case Kh is a constant that depends only
on the initial conditions. The following theorem states that in most cases the
system will be able to learn and converge to an optimal set of weights for which
P = 1.

Theorem 6.1 If β > 0, then for any set of initial conditions satisfying the
condition a1(0)a2(0) . . . aL−1(0) 6= 0, the system always learn and the weights
ai converge to an optimal equilibrium where P = 1. If the initial conditions
satisfy a1(0)a2(0) . . . aL−1(0) = 0 then P (t) = 0 at all times and the system
cannot learn. If β = 0, then for every i ai(t) = ai(0) and any choice of initial
conditions ai(0) is optimal.
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Proof. First, if β = 0, then I = 0 and ai(t) = ai(0) for every i. Thus any set of
initial weights provides an optimal solution, including 0 weights.

Thus, in the rest of the proof, let us assume that β >= 0. Let Q(t) =
a1(t)a2(t) . . . aL−1(t). Let us assume that Q(0) = 0 (rare set of initial con-
ditions). In this case P (0) = 0. Let i0 be the smallest index for which
ai0(0) = 0. Then the variables a1(t), . . . , ai0−1(t) evolve in time, but the vari-
ables ai0(t), . . . , aL(t) remain constant and equal to 0. Thus P (t) = 0 at all
times and the system cannot learn.

In the main case of interest, let us assume that Q(0) 6= 0, which is easily
achieved by any random initialization of the weights.

From the system in Equation 40, we immediately have:{
dQ
dt = βQ(1− P )(1 + a21 + a21a

2
2 + . . . a21a

2
2...a

2
L−2)

daL

dt = βQ(1− P )
(43)

As a result: 
dQ
dt = βQ(1− P )f
daL

dt = βQ(1− P )

P = QaL

(44)

where the function f satisfies f > 1 at all times. Thus dQ/dt = fdaL/dt and
thus the two derivatives always have the same sign. Furthermore note that if
P (0) = 1, the system is already at an optimal point and all derivatives are 0.
Assuming P (0) 6= 1, we can examine four possible cases of initial conditions
depending on the sign of Q(0) and aL(0):

1. Q(0) > 0 and aL(0) ≥ 0: If P (0) > 1, then both aL and Q decrease until
they converge to an optimal equilibrium where P = 1. If P (0) < 1, then
both aL and Q increase until they converge to an optimal equilibrium
where P = 1.

2. Q(0) < 0 and aL(0) ≤ 0: If P (0) > 1, then both aL and Q increase and
P decreases and converges to an optimal equilibrium where P = 1. If
P (0) < 1, then both aL and Q decrease, and P increases and converges
to an optimal equilibrium where P = 1.

3. Q(0) > 0 and aL(0) ≤ 0: Then initially P (0) < 1. Thus both aL and Q
increase, aL crosses 0 (corresponding to P = 0) and then aL and Q and P
keep increasing until P converges to an optimal equilibrium where P = 1.

4. Q(0) < 0 and aL(0) ≥ 0: Then P (0) < 1. Thus Thus both aL and Q
decrease, aL crosses 0 (corresponding to P = 0) and then aL and Q keep
decreasing while P increases until P converges to an optimal equilibrium
where P = 1.
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As an example, consider the simple case where L = 2. Thus we have:{
da1

dt = βa1(1− P )
da2

dt = βa1(1− P )
(45)

and thus: a2 = a1 + K where K = a2(0) − a1(0) is a constant that depends
only on the initial conditions. As a result, we have the polynomial ordinary
differential equation:

da1
dt

= βa1(1− a1(a1 +K)) (46)

The polynomial is of degree 3 with a negative leading coefficient and thus the
ODE is always convergent to a fixed point. The fixed points are given by:

a1 = 0 and a1 =
−K ±

√
K2 + 4

2
(47)

By simple inspection of the cubic function, the fixed point a1 = 0 is repulsive
and the other two fixed points are attractive. Thus for any initial condition
a1(0) 6= 0, a1 will converge to a non-zero fixed point, and so will a2. At this
fixed point, one must have P = 1 corresponding to an optimal solution.

Similar results can be obtained with various variants of the algorithms (num-
ber of cycles, presynaptic value, combination of activities).

6.3.2 The Linear A∗[1, 1, . . . , 1] Case with Multiple Cycles of Recir-
culation

If we recirculate the output n times through the A∗[1, 1, . . . , 1] circular autoen-
coder and take the difference between the activities in first circulation and the
n-th recirculation, the differential equation for learning are given by{

dah

dt = βa21 . . . a
2
h−1ah(1− Pn) for h = 1, . . . , L− 1

daL

dt = βa1 . . . aL−1(1− Pn)
(48)

where β = E(I2) and P = a1 . . . aL. Again we get the same deterministic
coupling between consecutive weights and thus:

log |ah+1| =
1

2
a2h +Kh or |ah+1| = Khe

a2
h/2 (49)

for h = 1, . . . , L − 2 where in either case Kh is a constant that depends only
on the initial conditions. The following theorem states that in most cases the
system will be able to learn and converge to an optimal set of weights for which
P = 1. It is identical to the above case corresponding to n = 1

Theorem 6.2 If β > 0, then for any set of initial conditions satisfying the
condition a1(0)a2(0) . . . aL−1(0) 6= 0, the system always learn and the weights
ai converge to an optimal equilibrium where P = 1. If the initial conditions
satisfy a1(0)a2(0) . . . aL−1(0) = 0 then P (t) = 0 at all times and the system
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cannot learn. If β = 0, then for every i ai(t) = ai(0) and any choice of initial
conditions ai(0) is optimal.

Proof. The proof is almost identical to the proof for the case n = 1. Again
letting Q(t) = a1(t) . . . aL−1(t), we have:

dQ
dt = βQ(1− Pn)f
daL

dt = βQ(1− Pn)

P = QaL

(50)

where the function f satisfies f > 1 at all times. The rest of the proof is identical
with the obvious adjustments.

One can also recirculate the output m times and compare the activities
between cycle m and any earlier cycle n (n < m). Specifically, in the learning
rate of each weight one can multiply: (1) the difference in post-synaptic activity
between cycle n and cycle m (as the “error” term); with (2) the presynaptic
activity at cycle n. This yields the system of differential equations:

dah
dt

= βa21 . . . a
2
h−1ahP

2n(1− Pm−n) for h = 1, . . . , L (51)

Theorem 6.3 If β > 0, then for any set of initial conditions satisfying the
condition a1(0)a2(0) . . . aL(0) 6= 0, the system always learn and the weights ai
converge to an optimal equilibrium where P = 1. If the initial conditions satisfy
a1(0)a2(0) . . . aL(0) = 0 then P (t) = 0 at all times and the system cannot learn.
If β = 0, then for every i ai(t) = ai(0) and any choice of initial conditions ai(0)
is optimal.

Proof. The same deterministic coupling between consecutive weights remains
and the proof is similar to the previous two proofs.

6.3.3 The Linear A∗[1, 1, . . . , 1] Case with Different Activity Combi-
nation

The previous analyses were carried with plain recirculation (PR). But similar
results are obtained with the other ways (e.g. CCR, RCC) of combining ac-
tivities. For instance, in the CCR case, the learning equations are identical to
the PR case except for an additional multiplicative factor of 1 − λ which sim-
ply rescales the learning rate. Thus there is the same convergence to the same
optimal solution. And in the linear case, the equations for RCC are identical to
the equations of CCR.

Thus in short, in the A[1, . . . , 1] linear case, for almost all initial conditions
and all variations of recirculation algorithms, learning converges to the optimal
solution.
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6.3.4 The Linear A∗[1, N, 1] Case

Consider the case of a linear circular autoencoder with expansive architecture
A∗[1, N, 1] with a vector of weights a = (ai) between the hidden layer and the
output layer, and a vector of weights b = (bi) between the input and the hidden
layer. The system of differential equations associated with PR learning is given
by: {

dai

dt = βbi(1−
∑
aibi) = βbi(1− P )

dbi
dt = βbi(1−

∑
aibi) = βbi(1− P )

(52)

where we let P =
∑

i aibi be the global multiplier of the system. Obviously the
derivative of ai is equal to the derivative of bi and thus any solution satisfies
ai(t) = bi(t)+ci, where the constant vector c satisfies: ci = ai(0)−bi(0). We let
A = ||a||2 =

∑
i a

2
i , B = ||b||2 =

∑
i b

2
i , and C = ||c||2 =

∑
i c

2
i . We immediately

have:

dP

dt
= β(1− P )

∑
i

bi(ai + bi) = β(1− P )(P +B) (53)

dA

dt
= 2β(1− P )P (54)

dB

dt
= 2β(1− P )B (55)

The following theorem states that in most cases the system will be able to learn
and converge to an optimal set of weights for which P = 1.

Theorem 6.4 If β > 0, then for any set of initial conditions satisfying the
condition b(0) 6= 0, the system always learn and the weights converge to an
optimal equilibrium where P = 1. If the initial conditions satisfy b(0) = 0 then
all the weights remain constant, P (t) = 0 at all times, and the system cannot
learn. If β = 0, then for every i ai(t) = ai(0) and bi(t) = bi(0) and any choice
of initial conditions is optimal.

Proof. First, if β = 0, then I = 0 and ai(t) = ai(0) for every i, and similarly
bi(t) = bi(0) for every i. Thus any set of initial weights provides an optimal
solution, including the case b(0) = 0.

Thus, in the rest of the proof, let us assume that β > 0. Let us assume
b(0) = 0 (rare set of initial conditions). In this case all derivatives are equal to
0 and, for every i, ai(t) = ai(0) and bi(t) = bi(0) = 0. Thus P (t) = 0 at all
times and the system cannot learn.

In the main case of interest, let us assume that b(0) 6= 0, which is easily
achieved by any random initialization of the weights. Note that if there are some
values of i for which bi(0) = 0 the corresponding ai(t) and bi(t) remain constant,
as above. Thus the evolution of the weights is concentrated on those indices i
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for which bi(0) 6= 0. We have the obvious bounds on P , and the vectors a, b, and
c: |P 2| = |ab|2 ≤ AB and A = B + C + 2bc ≤ B + C + 2

√
BC. Together with

the equations above, this shows that A,B, and P must be bounded. P (0) = 1
is a stable equilibrium. By taking the derivative of AB, we get:

dAB

dt
= 2βP (1− P )(1 +B) (56)

Note that AB ≥ 0 and AB = 0 if and only if A = 0 since here we are excluding
the case B = 0. If P (0) < 0, the derivative of AB is negative and AB decreases
until A = P = 0 after which the derivative of AB becomes positive, and both
AB and P grow until P = 1. Likewise, if 0 ≤ P (0) ≤ 1 the system converges
(or remains at) P = 1. If P (0) > 1, the derivative of AB is negative and AB
and P decrease until P = 1.
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Figure 3: Vector flow in the P,B plane for the system defined by Equations 53
and 55 with β = 1. The global optimal equilibrium correspond to the vertical
line P = 1.

The vector flow of the system in the (P,B) plane is shown in Figure 3.
Assuming P (0) 6= 1, we can examine four possible cases of initial conditions
depending on the size of P (0) and B(0):

1. P (0) > 1: In this case, initially dA/dt and dB/dt are negative and, from
the ODEs above, A and B and P will decrease until P = 1.

2. 0 ≤ P (0) < 1: In this case, initially dA/dt and dB/dt are positive and,
from the ODEs above, A and B and P will increase until P = 1.
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3. −B(0) ≤ P (0) < 0: In this case, initially dA/dt < 0, dB/dt > 0 and
dP/dt > 0, thus P will increase and A decrease until A = P = 0, after
which the dynamics is as in case 2 above. In particular, A and B will
continue to increase until P = 1.

4. P (0) ≤ −B(0): In this case, initially dA/dt < 0, dB/dt > 0 and dP/dt <
0, thus P decreases until P = B, after which the dynamics is as in case 3
above. In particular, P will continue to increase and and A to decreases,
until A = P = 0, after which A and B will increase until P = 1.

7 Simulations

7.1 Data Sets

Simulation experiments were performed on the following three data sets. For
each data set, a training epoch consisted of 60,000 examples, with another 10,000
examples used for testing.

1. Lowrank : We simulated data of dimension d with low rank r by creating
an r×d random matrix V with each element sampled independently from
N (0, 1). Each mini-batch of size n was then created by sampling a new
n × r matrix U , again with each element from N (0, 1), and computing
U · V . The data set used in these experiments has d = 100 dimensions
and rank r = 20.

2. MNIST : This well-known benchmark data set contains 70,000 28-by-28
grayscale images of handwritten digits, with real pixel values in the range
[0, 1]. In experiments with linear autoencoders, we use a linear output
layer with squared error loss, while in the non-linear architectures we use
a sigmoid output layer with cross-entropy loss.

3. Fashion: This data set contains 70,000 28-by-28 grayscale images of Fash-
ion accessories [10], with real pixel values in the range [0, 1]. In experi-
ments with linear autoencoders, we use a linear output layer with squared
error loss, while in the non-linear architectures we use a sigmoid output
layer with cross-entropy loss.

7.2 Comparison to Backpropagation and Random BP

Output recirculation was compared to backpropagation and random backprop-
agation using compressive autoencoders on three different data sets, in which
the high-dimensional data (d = 100 for Lowrank, d = 784 for MNIST and
Fashion) is compressed down to only 20 dimensions. In order to achieve good
reconstruction performance on these tasks, deep learning is needed to find good
low-dimensional representations of the data. Facilitating the comparison is the
fact that all three learning rules perform gradient descent in the last layer, and
differ only in how the intermediate-layer weights are updated.
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The experiments demonstrate that recirculation leads to good intermediate
representations with small reconstruction error on a variety of data sets and
architecture configurations. Figure 4 shows that recirculation quickly learns
the relevant latent subspace in the synthetic Lowrank task and achieves near-
zero reconstruction error. Figure 5 and 6 show that recirculation learns useful
intermediate representations on real images, in both linear and non-linear ar-
chitectures, with one or three hidden layers. Examples of reconstructed MNIST
digits are shown in Figure 7.

For each experiment, network weights were initialized from a scaled uniform
distribution [11], except for the bias terms at the output layer which was set
to match the expectation of the training data. The random backpropagation
matrices were constructed using the same initialization scheme. Weight updates
were made using a mini-batch size of 100 and a learning rate of 0.01, which
was decreased by a factor of 10 for architectures with three hidden layers, and
another factor of 10 for experiments on the Lowrank data set since the errors
were larger. In the linear architectures, the incoming weights to every neuron
were not allowed to exceed 2.0 for numerical stability (a constraint that only
requires local information). Also in the linear setting, all neurons had linear
activation and a mean squared error (MSE) objective, while in the non-linear
setting the hidden neurons had tanh activation while the output neurons had
the logistic activation with binary cross-entropy objective, or equivalently the
Kullback–Leibler divergence (KL).

Deep learning with stochastic gradient descent can lead to non-monotonic
trajectories of the training loss, and the non gradient descent learning rules are
even more susceptible to this. In recirculation, this is sometimes due to the
hidden layer weights growing very large, suggesting the need for regularization,
weight constraints, or different learning rates for each layer. Figure 8 gives
an example of this behavior in an MNIST compressive autoencoder with ten
hidden layers of 100 tanh units each, where using smaller learning rates in
the deep layers stabilizes learning. These details are similarly important for
RBP, SRBP, and ARBP algorithms, along with the initialization of the (fixed)
backwards weights.

7.3 Variants of the Recirculation Algorithm

Using the same MNIST autoencoder architectures discussed above, several vari-
ants on the plain recirculation algorithm were explored. First, Figure 9 compares
the five proposed approaches (PR, CCR, RCC, CCRCC, RWCC) to combining
the initial and recirculated output activity, which perform very similarly in ex-
periments. Second, in Figure 10, the neuron activity is recirculated multiple
times, from one to five, through the network, then the difference with the initial
activity is used in the recirculation learning rule. The top layer is updated with
gradient descent in every case. Again all variants seem to perform well.

Thus, in short, simulations on three data sets corroborate the mathematical
analyses. In particular, they show that recirculation can be used to train au-
toencoders, robustly with respect to its many variants. Thus recirculation can
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Figure 4: Lowrank test set performance of linear compressive autoencoders,
with either a single hidden layer of 20 units (left) or three hidden layers of shape
100-20-100 (right), trained with recirculation (REC), random backpropagation
(RBP), skip random backpropagation (SRBP), backpropagation (BP), and only
training the top layer (TOP).
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Figure 5: MNIST test set performance of linear and non-linear compressive
autoencoders, with either a single hidden layer of 20 units (left) or three hidden
layers of shape 100-20-100 (right), trained with recirculation (REC), random
backpropagation (RBP), skip random backpropagation (SRBP), backpropaga-
tion (BP), and only training the top layer (TOP).
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Figure 6: Fashion test set performance of linear and non-linear compressive
autoencoders, with either a single hidden layer of 20 units (left) or three hidden
layers of shape 100-20-100 (right), trained with recirculation (REC), random
backpropagation (RBP), skip random backpropagation (SRBP), backpropaga-
tion (BP), and only training the top layer (TOP).
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Figure 7: Reconstructed MNIST digits from the compressive autoencoder net-
work with 100-20-100 hidden linear units, trained with backpropagation (BP),
skip random backpropagation (SRBP), and recirculation (REC).
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Figure 8: MNIST test set performance for a non-linear compressive autoencoder
with ten hidden tanh layers, trained using recirculation with layer-specific learn-
ing rates (REC′), recirculation (REC), backpropagation (BP), and only training
the top layer (TOP). The same learning rate of 0.01 is used in each algorithm,
except for REC′, which uses a smaller learning rate in the lower layers: 0.01

2n for
the n-th hidden layer away from the output (n ∈ [0, 10]). At the beginning of
learning, the loss trajectory of REC closely tracks that of BP, but then the loss
increases and doesn’t recover. Using smaller learning rates in the deeper layers
alleviates this problem.
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Figure 9: MNIST test set performance of linear and non-linear compressive
autoencoders, with either a single hidden layer of 20 units (left) or three hidden
layers of shape 100-20-100 (right), trained with recirculation where the recircu-
lated activity is combined with the initial activity using plain recirculation (PR),
convex combination of recirculation (CCR), recirculation of convex combination
(RCC), convex combination of recirculation of convex combination (CCRCC),
or recirculation with convex combination (RWCC).

be used to derive effective hidden representations of the data in an unsupervised
fashion, without the need for additional deep learning channels. There is room
left to further explore how to best optimize hyperparameters for recirculation
and the related RBP algorithms in future studies.

8 Conclusion

Most applications of neural networks today are carried by simulating neural
networks in digital machines. The usefulness of these applications often leads
one to forget that in these simulations there are no neurons or synaptic weights,
only their fantasies stored in digital memory format. Forgetting the reality of
neural computations comes at a price, if nothing else energetic (a supercomputer
can consume 1̃00,000 Watts while a brain consumes only 40 Watts), and new
insights can be gained by thinking about learning in the machine, i.e. learning
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Figure 10: MNIST test set performance of linear and non-linear compressive
autoencoders, with either a single hidden layer of 20 units (left) or three hidden
layers of shape 100-20-100 (right), trained with the plain recirculation algorithm,
but where the learning rule in the deep weights uses the difference between the
initial activity and the activity after multiple (1-5) recirculations through the
circular autoencoder. A single recirculation (REC 1) is equivalent to the plain
recirculation algorithm.
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in native—as opposed to simulated—neural networks implemented in carbon,
silicon, or other substrates.

In essence, learning in the machine requires putting oneself in the shoes
of a physical learning system and its components, such as its neurons and its
synapses. Putting oneself in the shoes of a neuron, for instance, reveals why
the CONNECTED problem1 is much harder than it appears to be to a human
observer. Likewise, imagining that neurons have a high rate of failure leads
immediately to the dropout learning algorithm [12, 13] where, for each training
example, neurons are randomly dropped from the training procedure. Other
examples of “in the machine” thinking at the neuronal level include using local
connectivity as opposed to full connectivity, or relaxing the exact weight sharing
assumption behind convolutional neural networks.

More importantly, putting oneself in the shoes of a synapse provides a bet-
ter appreciation of the deep learning problem, and leads to the notions of local
learning, the stratification of learning rules by their functional complexity, the
identification of the fundamental limitations of deep local learning—why Heb-
bian learning cannot train a feedforward convolutional neural network—and to
local deep learning and the learning channel [1].

Here we have studied autoencoders from the learning-in-the-machine point
of view and shown that learning algorithms must exist that do not require a
separate learning channels running in the revers direction. This class of al-
gorithms, broadly named recirculation algorithms, contains several variations
which we have derived and studied through mathematical analyses and sim-
ulations. These analyses have revealed a remarkable connection with random
backpropagation, namely that recirculation algorithms can be viewed as forms
of adaptive random backpropagation. Recirculation algorithms provide some
additional plausibility for the use of autoencoders in machines, perhaps includ-
ing the brain, for extracting new, compressed or expanded, representations of
the data without any supervision.

In terms of biological neural networks, there are two key ingredients of re-
circulation that increase its potential plausibility. First, it removes the need for
symmetric connections, required by backpropagation, which may be challenging
for biological neurons. In fact, recirculation goes beyond that. In principle, the
problem of symmetric weights could be addressed by random backpropagation,
i.e. by using random weights in the learning channel. Recirculation removes
even the need for a separate learning channel. Second recirculation takes ad-
vantage of time differences, or signal derivatives, in the postsynaptic neurons
to encode error information, in a way that is not inconsistent with biological
observations and theories of learning, including STDP.

Using time differences in learning rules is just one example of a broader
theme of research focused on the role of time in physical neural systems. In dig-
itally simulated neural networks, most issues related to time are taken care of

1Given a binary input vector, determine whether the 0’s are all adjacent to each other
(with or without wrap around). The connectedness makes the problem easy to solve for the
human visual system. However, a neuron must learn the particular permutation associated
with the ordering of the coordinates.
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in a manner that is external to the neural networks being simulated. Typically,
activities in neurons and layers are updated sequentially according to a prede-
termined schedule. Likewise the timing and sequence of example presentations,
weight updates, hyperparameter optimizations and so forth are all handled by
external programs, using the digital computer clock. Obviously physical neurons
must operate in “real time”, with limited storage capacity, in an organic, largely
asynchronous, fashion and within larger networks. Operating in real time must
be true not only for learning, but also for all other activities neurons partake to.
The time dimension of neural computations was very much present in some of
the neuromorphic thinking of the 1980s [14, 15, 16, 17, 18] and revisiting some
of these issues, in particular by looking at the role of time while learning in the
machine, may lead to new insights.
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Appendix A. Physical Circular Autoencoders

When considering physical implementations of circular architectures with iden-
tical input and output units, additional issues need to be considered regarding
the nature of the connections and the corresponding physical constraints. For
simplicity, consider the case of a circular autoencoder with a single hidden layer
(L = 2). In the bidirectional case (circular bidirectional) (Figure 11, left), the
same connections between the input layer and the hidden layer are used bidirec-
tionally. If the connections are isotropic (circular bidirectional symmetric), the
corresponding synaptic weight is the same in both directions, otherwise it could
differ (circular bidirectional asymmetric). If the connections between the layers
are different, then we obtain a circular conjoined architecture, which again could
be symmetric (Figure 11, middle) or asymmetric (Figure 11, right). At the com-
putational level considered here, the bidirectional and conjoined architectures
cannot be distinguished.

Appendix B. Recirculation Algorithms in the Stan-
dard Autoencoder

This section considers learning algorithms for standard autoencoders. It can
be skipped by readers not interested in the technicalities that arise from the
physical layout of the standard autoencoder.
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Figure 11: Circular autoencoder architectures, where the neurons in the input
and output layer are identical. Left: circular bidirectional architecture, where
signals can be sent bidirectionally along the same connection presumably, but
not necessarily, with the same weight in both directions (symmetric vs asymmet-
ric cases). Middle: circular conjoined symmetric architecture with symmetric
connections (A = Bt). Right: circular conjoined asymmetric architecture with
asymmetric connections.

B1. Three Deep Learning Channels

Recall that the deep learning channels are the channels used by a physical
neural system to communicate non local information to its synapses [1]. For the
standard autoencoder, there are three deep channels, and their combinations, to
be considered (Figure 12): (1) a deep learning channel from the input layer to
the output layer through a matrix C1 = Id to communicate the input I to the
output layer in order to enable the computation of the error T − O2 = I − O2

locally at the output layer; (2) a deep learning channel from the output layer to
the hidden layer to communicate outputs (O2), or errors (T−O2 = I−O2) when
the first deep learning channel is present, to the hidden layer through a matrix
C2; and (3) a deep learning channel from the output layer to the input layer to
communicate outputs (O2), or errors (T − O2 = I − O2) when the first deep
channel is present, to the input layer through a matrix C3. The information
communicated by the third channel can be recirculated through the network.

B2. Algorithmic Variations

To develop learning algorithms for the standard autoencoder several possibilities
arise depending on:

1. The combination of deep learning channels that are available.

2. The nature of the matrices associated with the deep learning channels.

3. The nature of the information communicated through the channels, in
particular the output O2 versus the error T −O2 = I −O2.
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Figure 12: A standard autoencoder and its possible deep learning channels. A
combination of these channels is necessary for the autoencoder to be able to
reach optima of the error function using only local learning rules.

4. How the recirculated neural activity combines with previous cycles, and
over which time scales and number of cycles (PR, CCR, RCC, CCRCC,
RWCC).

5. The local learning rules used to update the weights, whether learning
rules are applied also to the matrices in the deep learning channels (adap-
tive case), and whether non-linear transfer functions are used in the deep
learning channels.

To streamline the analysis and reduce the number of possibilities here we focus
on the main and most interesting cases in terms of channels and information
being communicated. In particular we assume that C1 = Id and that C3 = Id
unless otherwise stated. We also exclude the case where both C2 and C3 are
present for several reasons. First this possibility is not necessary since several
useful algorithms can be found using only C2 or C3. Furthermore, from a
physical neural machine standpoint, having both C2 and C3 incurs additional
connectivity costs. And finally, having both C2 and C3 leads to a combinatorial
explosion of cases depending on whether output or errors are communicated over
each channel, and this problem is compounded as the number of hidden layers
is increased. In terms of unit activities, we consider primarily the PR case but,
as for the case of the circulat autoencoder, it should be clear how to extend the
results to other cases. In terms of channels this leaves the combination listed in
Table 5 organized into three groups:

1. Recirculation of Ouputs Only: corresponding to C2 alone to recircu-
late the output to the hidden layer or, C3 alone to recirculate the output
to the input layer.
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2. Recirculation of Errors Only: corresponding to C1 = Id to compute
the error, with C2 to recirculate it to the hidden layer, or C3 to recirculated
it to the input layer (but not both).

3. Mixed Recirculation (Error Calculation with Recirculation of
Outputs): corresponding to C1 = Id to compute the error, with C2 to
recirculate the output to the hidden layer, or C3 to recirculate the output
to the input layer (but not both).

C1 C2 C3

0 0 0 optimal learning impossible

0 1 0 optimal learning impossible or problematic

0 0 1 circular autoencoder

1 0 0 optimal learning impossible (A can be trained but not B)

1 1 0 backpropagation of errors (BP with C2 = At; RBP with C2 = C)

1 0 1 circular autoencoder

1 1 0 mixed recirculation problematic (C = Bt)

1 0 1 mixed recirculation (circular autoencoder)

Table 5: Learning channel combinations in the standard autoencoder. The table
is further subdivided into three groups. In the first “output only” group (top
3 rows), the error is not computed in the output layer and only the output
activity is communicated over the remaining channels (C2 or C3). In the second
“error only” group (middle 3 rows) the error is computed in the output layer
and communicated over the remaining channels. In the third “mixed” group
(bottom 2 rows), the error is computed in the output layer and used to train A,
but the output activity is communicated instead over the remaining channels.
See text for detailed explanation of each row.

B3. Recirculation of Outputs Only

This case corresponds to the first three rows of Table 5 and Figure 13. If there
are no deep learning channels at all (row 1), optimal learning is not possible
since no information about the error is available in order to train A or B [1].
If channel C2 is implemented by a matrix C connecting the output layer to the
hidden layer (row 2), it is still not clear how A could be trained since no error
information is available. [As far as learning B, if C = B then the hidden layer
can compute BI−BO2 = B(I−O2). So a transformed version of the error could
be available in the hidden layer, but this would not remain true as B evolves

35



(C would have to evolve identically violating locality again)]. Thus, in short,
optimal learning seems problematic. Finally, if the output is recirculated to the
input layer (row 3) we are back to the case of a circular autoencoder with one
hidden layer if C3 = Id, with a choice of recirculating the error or the output.
If C3 = C for some C 6= Id, this could still correspond to a circular autoencoder
with two hidden layers, provided the output is defined as O3 = CABI.

Figure 13: Recirculations of Outputs Only. Left: The output O2 is fed back to
the hidden layer through a matrix C2 = C. Right: The output O2 is fed back
to the input layer through a matrix C3 = C, with most often C3 = Id.

B4. Recirculation of Errors Only

This case corresponds to the middle three rows of Table 5 and Figure 14. In
this case, we assume that C1 = Id is present, allowing the computation of the
error T − O2 = I − O2 locally at the output layer. This error can be fed back
to the hidden layer using a matrix C2, or to the input layer using a matrix C3.
Because the error is available at the output layer, the matrix A can be adjusted
using gradient descent as the local learning algorithm, as usual. However if
only C1 = Id is available (row 4), then there is no mechanism for providing
error information to the hidden layer in order to train the matrix B. And thus
optimal learning is not possible. If C2 is present (row 5), then if C2 = At

this corresponds to backpropagation. However this requires postulating some
physical mechanism to ensure that C2 = At at all times during learning. More
elegantly, if C2 = C for some fixed random matrix C, learning can proceed
by random backpropagation and no mechanism to ensure weight symmetry is
needed (Figure 15). Finally, if C1 = Id and C3 = Id (row 6), we are back to the
case of a circular autoencoder with one hidden layer with error recirculation.
The hidden layer receives a transformed version of the error equal to B(I−O2).
If C3 = C 6= Id, learning is still possible since the hidden layer receives a
transformed version of the error equal to BC(I−O2). As usual, using the mean
value theorem this remains true if there is a non-linearity F in the hidden layer
(the transformed version of the error is of the form F ′(R)BC(I −O2). Because
B evolves in time, this is a form of ARBP.
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Figure 14: Recirculation of Errors Only. The channel with the identity matrix
(C1 = Id) enables the local computation of the error T − O2 = I − O2 at the
output layer. This error is used to adapt the matrix A. This error is also fed
back to the hidden layer or to the input layer. Left: Backpropagation (C2 = At).
Middle: Random backpropagation using a random matrix C2 = C. Right: Error
recirculation using a matrix C3 = C.

Figure 15: Standard backpropagation or random backpropagation, architecture
for the standard autoencoder. Left: This requires first communicating the in-
puts to the output layer (C1 = Id), so that the error T − O2 = I − O2 can be
computed locally. Right: Then the error is backpropagated through a matrix
C = At in the case of backpropagation, or a random matrix C in the case of
random backpropagation. The deep learning channels are shown in orange.

B5. Mixed Recirculation: Recirculation of Outputs with
Error

This case correspond to the last two rows of Table 5 and Figure 16. In this
case, we assume that C1 = Id is present, allowing the computation of the error
T − O2 = I − O2 locally at the output layer. This error can be used again to
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update the matrix A by gradient descent. In addition the output O2 is fed back
to the hidden layer using a matrix C2 (row 7), or to the input layer using a
matrix C3 (row 8). When the output is recirculated to the hidden layer (row
7), it is not clear that this case can be made to work with a generic matrix
C. However, if C = B, then the hidden layer sees BI in the initial forward
pass and BO2 in the recirculation pass. Thus the hidden layer can locally
compute B(I −O2) (assuming the two passes are local in time), which is again
the error transformed by an adaptive matrix B. Thus again this case falls under
ARBP and is convergent under the present assumptions. Even if one takes into
account a non-linearity F in the hidden layer, then the layer sees O1(0) = FBI
in the initial forward pass, and O1(1) = FBO2(0) in the recirculation pass.
Assuming the two passes are local in time, the layer can locally compute the
difference: O1(0)−O1(1). By the mean value theorem, we have: O1(0)−O1(1) =
FBI − FBO2(0) = F ′(R)B(I −O2(0)) where F ′ is a vector of derivatives and
R is a vector of intermediary values. Thus even in this case the hidden layer
receives a noisy, but in general full-rank, transformed version of the error and
thus it should be able to learn as in ARBP. The limitation, however, is that in
a physical neural system this case requires a physical mechanism for ensuring
that C2 = B at all times. Finally, when the output is recirculated to the input
layer (row 8) with C3 = Id, B can be trained as in a circular autoencoder with
a single hidden layer.

Figure 16: Mixed Recirculation: The channel with the identity matrix (C1 = Id)
enables the local computation of the error T −O2 = I−O2 at the output layer.
This error is used to adapt the matrix A by gradient descent. The output O2

is fed back to the hidden layer or to the input layer. Left: (C2 = At). Middle:
Mixed recirculation using a matrix C2 = C. Right: Mixed recirculation using a
matrix C3 = C.
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